Review of Cathode Materials for Solid Oxide Fuel Cell
نویسندگان
چکیده
منابع مشابه
Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملchemical precipitation and characterization of multicomponent perovskite oxide nanoparticles – possible cathode materials for low temperature solid oxide fuel cell
a set of multicomponent perovskite oxide nanoparticles based on la1-xsrxco1-yfeyo3-δ(lscf) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (lt-sofc) as cathode materials. the precursor materials used in this synthesis were lanthanum nitrate hexahydrate [la(no3)3.6h2o], strontium nitrate [sr(no3)2], cobalt nitrate hexahydrate [co...
متن کاملStudy on Sm1.8Ce0.2CuO4–Ce0.9Gd0.1O1.95 composite cathode materials for intermediate temperature solid oxide fuel cell
Sm1.8Ce0.2CuO4–xCe0.9Gd0.1O1.95 (SCC–xCGO, x = 0–12 vol.%) composite cathodes supported on Ce0.9Gd0.1O1.95 (CGO) electrolyte are studied for applications in IT-SOFCs. Results show that Sm1.8Ce0.2CuO4 material is chemically compatible with Ce0.9Gd0.1O1.95 at 1000 °C. The composite electrode exhibits optimum microstructure and forms good contact with the electrolyte after sintering at 1000 °C for...
متن کاملThe Effect of cathode Porosity on Solid Oxide Fuel Cell Performance
In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Scientific Research in Physics and Applied Sciences
سال: 2018
ISSN: 2348-3423
DOI: 10.26438/ijsrpas/v6i6.162165